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CHARACTERIZING THE LUNAR PARTICULATE
ATMOSPHERE WITH THE AUTONOMOUS

LUNAR DUST OBSERVER (ALDO)



Motivations for ALDO:

 Systematically study lunar dust “weather” phenomena

 Monitor and characterize anthropogenic effects on the dust
environment

 Observe micrometeorite/regolith interaction processes

ALDO is:
 a sensitive, short wavelength scanning laser radar (lidar).
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Evidence for a Lunar Dust Evidence for a Lunar Dust ““AtmosphereAtmosphere””
 Horizon Glow Horizon Glow

Rennilson and Criswell (1974): Analysis of Surveyor
lander images of horizon glow after sunset.
• Image is a composite
• dust cloud has been repositioned
• distance to horizon ~ 150 m suggests h~0.3 m
• angular extent suggests particle radii ~6µm (fwd scatter peak)
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Lunar Horizon Glow - 2Lunar Horizon Glow - 2
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LEAM Apollo 17: Diurnal Lunar Dust LEAM Apollo 17: Diurnal Lunar Dust ““WeatherWeather””

 

Compare: Evidence for horizontal dust “wind”

sunrise

Persistent diurnal cycle in lofted dust density

sunset

sunrisesunset
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Lunar Dust and Human ActivitiesLunar Dust and Human Activities

Dust line

Dust line

Dust line

Dust line

• Astronaut health
• Equipment performance
• Sortie site experiment disturbance
• Best experiment placement
• Impact on natural phenomena
• Determining best operating practices



ALDO Concepts and Feasibility
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ALDO Deployment ConceptALDO Deployment Concept

Sortie 
site 

fiducial  

Solar panels deploy with self-leveling legs
 

Hemispherical
Scanning

Lidar 
 

You are here
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ALDO ArchitectureALDO Architecture
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Preliminary Model Expectations:
• ~5/m3 1 µm diameter spherical silicate particles implies:

                  βπ ~1*10-12 m-1sr-1

• ~2500 photon counts/s from 1 km range (~2% intensity )

• 1 W laser implies  ~25 W average system electrical powerThe lidar equation

360° Azimuth
scan

High repetition rate short
(UV?) wavelength laser Laser

Photon Counting Detector

TOF-mapped Memory

-5° to + 30°Elevation scan

Fixed vertical profiling

Photon Counting Detector Ultrasonic PZT 
2-axis scan drive

(Low power, low temperature)

*

Control and
Processing

RF Com to

Base station
*Polarization Beam Splitter

Narrow BP
Filter

2-axis
Accelerometer

Telescope

NO ADC’s
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ALDO Scan ModesALDO Scan Modes

Full Volume Image Scan:
repeated RHI’s - step each in azimuth - slow, but produces full 3-D
image (30º elevation X 360° azimuth X (100 m)3 resolution at 1 km: ~5 min.)

0.1 m vertical res. 
@ 1 km

30°

1 km (10 km or more with
sufficient βπ)

High 
Sensitivity

Vertical
Profiles
(stare)

Fine scale vertical cross
Section scans

range res.
5-1000 m

0.5 - 2m

High resolution vertical scan

2°

Course vertical Slice (RHI’s)
0-

360°

Fixed elevation azimuth Slice (PPI’s)
sample volumes
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ALDO Modes and MotivesALDO Modes and Motives

ALDO Operating Mode Concepts:
 Autonomous site survey using fiducial markers
 Self-calibration for intensity using fiducial marker signal returns
 Fine scale vertical profiling near surface
 Rapid 360° cross section scans that reveal and track coherent structures
 Panoramic volume images provide large scale dust context
 Long stares providing high sensitivity vertical profiles (perhaps to 10 km)

Systematic Process Studies:
 Lidar provides large area range-resolved dust observations without affecting plasma
 Micrometeorite impact plumes (rates, decay, transport)
 Natural phenomena – dark vs. sunlit, terminator crossings, fountains, profiles, dust

transport and velocities (track coherent structures)
 Anthropogenic effects – what activities/methods  kick up the most/least dust
 Decay time from disturbed to natural background state
 Instrument effects on the dust environment
 Supports studies of the solar wind, optical, and tribo- charging phenomena



Phenomenology Modeling
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Numerical Simulations Predicting DustNumerical Simulations Predicting Dust

Motivation:
Predict the particle size and altitude distribution expectations for various

to phenomena to evaluate ALDO requirements

Model for Lunar Phenomenology and Particle Characterization:
 Dayside photoelectron sheath.
 Calculate surface potential.
 Calculate currents to dust particle.
 Integrate equation of motion under force of gravity and electric force.
 Include effects of topography on shadowing (surface potential) and

trajectories (not yet included)

Assumptions in the Model for Lidar Backscatter:
 Mie scattering (spheres) for now
 At the moment: flat mass distribution 100nm – 1000 nm
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Object Oriented Particle in Cell (OOPIC) modelObject Oriented Particle in Cell (OOPIC) model
simulation of plasma sheathsimulation of plasma sheath

Colwell et al. 2009 (J. Aero. Eng., in press)
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Electric vs. Gravitational Force BalanceElectric vs. Gravitational Force Balance
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Trajectories of Lunar DustTrajectories of Lunar Dust

Launch v=200 cm/s
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Trajectories of Lunar DustTrajectories of Lunar Dust

Launch v=200 cm/s
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Lunar Particulate Atmosphere Simulation ConclusionsLunar Particulate Atmosphere Simulation Conclusions
(so far)(so far)

 Surveyor Horizon Glow particles are not floating (would be much higher,
extended cloud), but are on ballistic trajectories.

 Height of HG cloud and size of LEAM (~30 cm) limit likely electrostatic
launch velocity to 1 m/s.

 Useful (and practical) to characterize particles in the range of 0.1 µm – 5
µm number density range TBD.
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Next StepsNext Steps

 Develop several standard dust atmosphere and performance predictions

 Hone in on laser and receiver requirements

 Trade power options (batteries, insulation, phase change materials)

 Consider night operations and survivability

 Consider ease of deployment

 Develop a technology roadmap
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ConclusionsConclusions

Observing natural and anthropogenic dust levitation and transport phenomena supports:
• Study of the evolution of airless bodies (e.g. moon, NEOs) including formation of
    regolith, stratigraphy/compaction, water and other resource content, and albedo
• Health, safety, and operational efficiencies for extended human activities
• Optimal design of instrumentation for long term operation (thermal control, optical
effects, power systems, mechanisms)

Systematic lidar profiling of the dust environment enables study of :
• Micrometeorite impact plumes (rates, decay, transport, gardening)
• Natural background – dark vs. sunlit, terminator crossings, fountains, profiles, transport
• Anthropogenic effects – what activities/methods  kick up the most/least dust
• Decay time from disturbed to natural background
• Instrument modifications to the local dust environment
• Solar wind, photoelectric, and tribo- charging effects on dust penomenology

• A top level lidar concept has been developed using modeled expectations of backscatter
• Reasonable existing (but not qualified) UV lasers support  photon counting
measurements
• An easily deployed, compact, robust, scanning, dust profiling lidar appears feasible

• ALDO is deployable on both robotic and human missions
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Backup: Charging of the Lunar SurfaceBackup: Charging of the Lunar Surface
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Backup: Equations of Charge and MotionBackup: Equations of Charge and Motion
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